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Abstract: The recently published energy-dependent hard model for displacement reactions and the soft model due 
to Karplus and Raff are compared in detail by studying simultaneous trajectories in each of them. The study is 
performed for different sets of masses and almost over the entire reactive zone (above thermal energies), thus per­
mitting a detailed analysis of the semiempirical parameters used in the two models. 

Recently a model1'2 was presented which permits 
. the computation of the cross sections for en­

ergetic displacement reactions of the type 

ZY + X — > Z X + Y (1) 

where X and Y are isotopes and Z is an atom or a 
group of atoms which is assumed to behave as a single 
particle. The model follows the general lines of the 
model assumed by Karplus and Raff,34 but the semi-
empirical Blais-Bunker potential5'6 used by Karplus 
and Raff is replaced by a cutoff potential; specifically, 
the ordinary Morse potentials of the respective particles 
are replaced by square well potentials and the exponen­
tial repulsion term is replaced by a rigid ball potential. 
This change, which essentially describes an energy-
dependent hard model, has permitted a relatively simple 
treatment of the three interacting particles X, Y, and Z 
during the reaction process, and served as a check 
on the sensitivity of the semiempirical parameters used. 

The model was tested by comparing the results with 
those derived by Karplus, Porter, and Sharma7 for 
the reaction 

H2(D2) + T —> H(D)T + H(D) (2) 

The fit was found satisfactory. 
The comparison with experiment involves the use 

of the reaction integral R which is defined as8 

R-JfE (3) 

where a(E) is the total reactive cross section ar.d E 
is the laboratory kinetic energy of the projectile, X, 
which interacts with the target molecule ZY. The 
latter is assumed to be stationary. Seewald, Gersh, 
and Wolfgang8 determined experimentally the ratio 
RHJRO-! for reaction 2, and Wolfgang and Seewald9 

determined the ratio ^ H T / ^ D T for reaction 4. In both 
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(HT + D 
H D + T — > < (4) 

(DT + H 

cases, the values calculated by the "hard" model1 were 
in good agreement with the experimental results. 

An extension of the above calculations based on 
the hard model (henceforward HM) to other cases 
disclosed disagreements with the values derived from 
the apparently more realistic soft model (SM) of Karplus 
and Raff. The deviations appeared mainly in the high-
energy region (>10 eV) and at two extremes: (i) 
when the mass of Z was much greater than the masses 
of X and Y, and (ii) when the masses of X and Y were 
much greater than the mass of Z. In the first case 
the HM-calculated cross sections were too large, and 
in the second case they were too small. 

A comparison between the two models can be per­
formed, since the major difference between them is 
that different energy surfaces are assumed, but both 
surfaces, as will be shown, are determined essentially 
by the same basic parameters and are therefore inter­
related. Since the treatments of both the SM and 
the HM are semiempirical, it was decided to go through a 
systematic test of the sensitivity of the cross sections 
calculated by the two models to the parameters used. 
This may eventually lead to a better insight into the 
more realistic SM, since the details of the interactions 
in the HM are relatively simple and well understood, 
and by adding a few assumptions the HM can be 
brought rather close to the SM. Furthermore, the 
importance of the different parameters and terms of 
the Blais-Bunker potential used in the SM can be 
deduced. 

In the study reported here the two models were 
compared by performing a series of trajectory calcula­
tions and examining the resulting cross sections. 

As a final comment we would like to emphasize that 
this study and the conclusions drawn do not refer to 
the thermal-energy region, where other studies34 '10 

strongly support the assumption that the potential 
governing the interaction between the particles involved 
is of a soft nature. 

The Models 

(1) Initial Conditions. In order to perform a sys­
tematic comparison between the two models, the initial 
conditions for each trajectory are taken to be the same: 

(10) P. J. Kuntz, M. H. Mok, and J. C. Polanyi, ibid., 50, 4623 (1969). 
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Figure 1. Potential energy surface for linear Y-Z-X, according to 
SM. Energy contours are in electron volts relative to V = K0x = 
4.4 eV for the infinitely separated atoms (Rx = X-Z, Ry = Y-Z in 
angstroms). 

the origin is assumed to be at the center of mass of 
the system ZY, and the z axis is along the axis of the 
molecule. The distance between Y and Z at time t = 0 
is L and the projectile X is at the point R. Thus at 
t = 0 the position coordinates of the three particles are 

z(o,o, -^-L) 
\ my + mz ) 

(o, o, 
wy + mz • ) 

(5) 

X (R sin 8 cos <j>, R sin 8 sin <f>, R cos 8) 

where R is the distance of X from the center of mass 
of the ZY system and 6 and <j> are the polar coordinates 
which determine the direction of R. 

The initial momenta of Z and Y are taken as zero, 
whereas for the projectile one finds that for a given 
initial kinetic energy E the momentum P takes the form 

Px = P(cos 8 cos <f> sin S cos 77 — 

sin <j> sin 5 sin 77 + sin 6 cos <j> cos S) 

P y = P(cos 8 sin 4> sin 5 cos 17 + 

cos <t> sin 5 sin 77 + sin 9 sin 0 cos 5) (6) 

P2 = P( —sin 8 cos T) sin 5 + cos 6 cos 8) 

where P = -\/2mxE and S and 77 are the polar angles 
determining the direction of the vector P in a coordinate 
system in which z is in the direction of R. As can be 
easily verified, the different trajectories are independent 
of the angle <f>, so that 4> can be assumed to be zero. 

(2) The Potential Energy Field. The potential energy 
fields for the two models can be written in the form 

V(rx, ry, rxy) = Vx(Tx, ry) + Vy(ry, rx) + 

Vx,y(rx, ry) + Vxy(rxy) (7) 

where rx is the distance between Z and X, ry is the dis­
tance between Z and Y, and rxy is the distance between 
Y and X. In SM, the terms Vy(ry, Tx) and VJjx, ry) are 
the two ordinary Morse potentials, the first for the 

target molecule ZY and the second for the newly 
formed molecule ZX. 

^yOv. rx) 

Vx(Tx, ry) 

PyOy) = 

V0y(l - exp[-«y(ry - r0y)])
2 

Oy 

(8) 
Vx(Tx) = 

F0x(I - exp[-«x(rx - r0x)]y - V0x 

In HM these two terms are replaced by square well 
potentials, i.e. 

( 00, ry < py for any rx 

PyOV, rx) = \-V0y, Py < ry < Ry; rx> Rx (9) 

\ 0, ry > Ry for any rx 

and 

Vx(rx, ry) = 

<*,rx< px; for any ry 

-V0x, px < rx< Rx; 

(0, rx > P x ; for any ry 

ry > P y (10) 

In these equations Ry and P x are the radii of attraction 
between Z and Y and between Z and X, and px and py 

are the radii of repulsion between Z and Y and Z and X, 
respectively (see Figure 2). The values of Px , P y , px, 
and py are derived from the respective Morse potentials, 
as will be discussed later. 

The potential term Px,y0v, ry) is a three-body poten­
tial which reduces the YZ attraction when the X atom is 
in the vicinity of YZ, and the XZ attraction when Y is in 
the vicinity of XZ. Thus in SM this term is represented 
in the form4 

* X,y\'Xi Ty) = 

F0y[l - tan (Bxrx - yx)]exp[-ay(ry - r0y)] + 

F0x[I - tan (j3y?v - Ty)] exp[-ax(rx - T0x)] (11) 

whereas in HM this term takes the form 

1 - Po, PX<TX< P x ; Py < ry < Py 

' j d y v x ) ?y) 0 elsewhere 
(12) 

The fourth term Fxy0xy) stands for the repulsion 
between X and Y; in SM it takes the exponential 
form 

' x y v X y ) ' 0xy£ 

and in HM the hard-sphere form 

,.(>« roxy) 

V*^> \0, rxy > Pxy 

(13) 

(14) 

where pxy is derived from V0xy, a%, and r0xy. 
The two potential energy surfaces for the linear 

Y-Z-X system are given in Figures 1 and 2. 
(3) Equations of Motion, (a) The SM Case. If qx, 

qy, and qz are the coordinates of the particles X, Y, 
and Z in the laboratory system, and px, py, and pz are 
their momenta, then the generalized coordinates are 
defined by the relations 

Q z y = Qz - Qy 

1 

W v m, 
(15) 

Qxyz = Jj (mxqx + myqy + mzqz) 
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where M = mx + my + mz. Qzy represents the co­
ordinates of Y with respect to Z, Qxyz represents the 
coordinates of X with respect to the center of mass of 
Y and Z, and Qxyz represents the coordinates of the 
center-of-mass system of the three particles. The 
generalized momenta that are conjugate to the new co­
ordinates are given by the old ones in the form11 

P ™y 
y my + mz 

_my + mz 
* x,yz 

Pz -
mz 

my + mz 

mv (Pz + Py) (16) 
M n M 

Pxyz = Px + Py + Pz 

Consequently, the Hamiltonian function takes the form 

H = J_ 
2My 

1 
P 2 4-
' yl 2u |Px,yz|2 + 

where 

J_ 
My z 

J_ J1 

- I P 2M1 * 

1 

Mx,yz 

I 2 + V(rx,ry,rxy) (17) 

J_ 1 
^ x wjy + mz 

and V(rx, ry, rxy) is the potential field of which rx, ry, 
and rxy are given in the form 

ry = I Qz 

r, = 
wv 

my + mz 
Q x y (18) 

m. 
my 4- m. 

Qzy + Qx 

Hamilton's equations of motion for the three-body 
system are given by 

AQ1 

dt 
dH dPj 
d P / dt 

dH 
(19) 

where j is an index which signifies the components of 
the different coordinates and momenta. 

These equations can be represented explicitly and 
are solved numerically by the Runge-Kutta-Gill 
method.12 The solution yields the trajectory of the 
three particles as a function of time. 

(b) The HM Case. If qx, qy, and qz are the coordinates 
of the particles X, Y, and Z in the laboratory system, 
and Vx, Vx, and vz are their velocities, then the relative 
coordinates and velocities are as follows 

i"xz = Qx - q z 

ryz = Qy - Qz (20) 

rxy = qx - qz 

and 

*xz Vx v z 

VyZ Vy Vz 

Vxy = Vx Vy 

(21) 

(11) E. T. Whittaker, "A Treatise on the Analytical Dynamics of 
Particles and Rigid Bodies," 4th ed, Cambridge University Press, 
Cambridge, England, 1937. 

(12) S. Gill, Proc. Cambridge Phil. Soc, 47, 96 (1951). 
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Figure 2. Potential energy surfaces for linear Y-Z-X, according to 
HM. Contours representing the edges of the different potential 
regions as a function of the energy E of the projectile (atom X): 
(a) the surface for the masses m* = my = mt = 1 mu, (b) the sur­
face for the masses mx = my = 1 mu, mt = 10 mu; (c) the surface 
for the masses mx = my = 10mu,m, = 1 mu. 
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Considering again the representation of the potential 
energy field, one finds that the interaction between 
the three particles is, in fact, composed of a series of 
two-body interactions, where each such interaction is 
independent of the existence of the third particle. How­
ever, since a three-particle system is considered, one 
has to find which pair of particles is going to collide 
first. Thus, assuming, for instance, that the last col­
lision took place between X and Y, one has to compute 
the times tyz and ?xz, where tyz is the time that elapses 
before a collision between Y and Z and txx is the time 
that elapses before a collision between X and Z. Con­
sequently if txz > tyz, then Y and Z are going to collide 
before X and Z do, and the contrary happens if txz < tyz. 

If ryzi is the relative position of Y with respect to Z 
immediately after the collision between X and Y, then 
tyz is given by the equation 

1 
:L V^yz ' l y z i j -\~ 

V(V 'TyZiJ* n*y* zfl2)] (22) 

where vyz is the relative velocity of Y with respect to Z, 
and \ryzi\

2 is the distance between Z and Y at the point of 
contact; i.e., ryzf equals either Ry or py (see eq 9). A 
similar equation exists for txz. In general, ryzf is equal 
to Ry and is only equal to py if the reduced particle Y-Z 
hits the inner part of the potential. The conditions 
for this are 

(Vyz "TyZi) < 0 

> Tyz 
(,Vyz ' "yz i j 

(23) 

(24) 

Similar conditions have to be checked for the reduced 
particle X-Z. 

Assuming, for instance, that the conditions (23) and 
(24) are fulfilled, and that txz > tyz, one first computes the 
relative positions of the three particles after time t = 

*xzf »xzi ~t~ *yz*xzi 

•yzf Iyzi "i~ ' yz 'yz i 

* xyf * xzf ^yzf 

(25) 

One then computes the relative velocities that have 
changed due to the collision of Y with Z 

zf = Vy > \ ' y z i ' Ty zf^ry zf 

*xzf *xz 
mv 

Tvzfi2»iy + m. 
(V yzi ' 'yzf. )Tyz 

'xyf »xzf 'yzf 

All the other cases are treated in the same manner. 
(4) Tests for the Final State. Considering the system 

(ZY, X) one would in general expect four possibilities. 

ZY + X — > ZX + Y (i) 

ZY + X — > ZY + X (ii) 

ZY + X —>• Z + X + Y (iii) 

ZY + X — > YX + Z (iv) 

It is easily seen that using the above potential fields, 
the fourth reaction is excluded, since no attraction is 
assumed to exist between Y and X. In the case of 

SM the decision between the three other cases is made 
by testing the distances between the three particles 
after an "infinite" time. Thus ifthe distance between X 
and Z is finite, then the molecule ZX is formed (case i). 
If the distance between Y and Z is finite, then no re­
action has occurred (case ii). If both distances are 
infinite, then case iii is met. (The potential field is 
constructed in such a way that no activated complex 
can be formed.) Thus one gets the final result in a 
"natural way" in the sense that one has only to check, 
after an infinite time, the relative distances between 
the three particles. 

In the case of HM the test is done in the following 
way. Assuming X to be already in the region of at­
traction of Z, we follow the motion of the three particles 
and check which of the two particles X or Y first 
reaches its boundary of attraction with Z. If, for 
instance, Y does so, then, according to the assumptions 
of HM, it leaves Z without causing any changes or 
disturbances in the system, and the condition for having 
either (i) or (iii) is dependent on whether the internal 
energy Eix of the system Z-X is smaller or larger than 
Fox/cos2 \px, where \px is the angle of collision, i.e., 
the angle between the trajectory of the reduced particle 
XZ and the radius of the square well. 

The case where X first reaches its boundary of at­
traction with Z is treated similarly, and the condition 
of having either (ii) or (iii) is dependent on whether 
the internal energy Eiy of the system Z-Y is smaller 
or larger than K0y/cos2 \py, where \py is defined in a 
similar way to \px. 

The Comparison between SM and HM. In order to 
perform a numerical comparison between SM and HM, 
the following arbitrary values were taken:13 F0x = 

Oy 4.4 eV, Foxy = 0.2 eV, r0x = r0y = 0.75 A, ax 

= 1.8 A-1, /Sx = 0y = 1.1 A, 7x = Ty = -0.734, 
r0xy = 2.3 A, and axy = 3.6 A - 1 . 

This group of parameters can be divided into three 
subgroups. The first includes F0x, V0y, r0x r0y, ax, 
and cty, which are the characteristic parameters of the 
Morse potentials of ZX and ZY; the second includes 
the parameters (3X, /3y, yx, and yy, which appear in the 
attenuation terms and are determined in such a way 
as to yield a surface as smooth as possible along the 
reaction coordinate (as long as the exponential repulsion 
term is ignored), without dips and bumps14 (see Fig­
ure 1); the third includes the parameters V0xy, rBxy, 
and axy, which appear in the exponential repulsion 
term representing the interaction between X and Y. 

These parameters are used to represent the energy 
potential surface in SM. The first and third subgroups 
will also be used to derive the energy surface in HM, 
but the second subgroup will be replaced in HM by 
only one parameter, viz., V0, which represents the two 
attenuation terms in SM. The value of V0 is assumed 
to be equal to that of V0x (and VBy). 

Although it seems that in order to describe the surface 
in HM additional parameters have to be introduced, 
namely Rx, Ry, px, py, and pxy (those which determine 
the radius of influence of the different cutoff potentials), 

(13) The numerical values taken for the different parameters are arbi­
trary, albeit closely related to the cases treated in ref 1. 

(14) In ref 1 it was shown that one can determine the threshold energy 
for a given reaction using only one term, Kxy(rxy), of the entire potential; 
therefore, as long as this term is not included in the potential there is no 
reason to assume the existence of any bumps or dips in the remaining part 
of the potential. Using this assumption /3X, f3y,yx, and py were fitted. 
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it will be shown in the following section that they are 
closely related to those used in SM. 

As has already been mentioned, the results derived 
by the use of HM (see ref 1) are sometimes in agreement 
with those obtained from SM and sometimes in dis­
agreement. One of the main factors influencing the 
correspondence between the two models is the masses 
of the interacting particles. Therefore, the comparison 
was made for three extreme cases: the first where 
the three masses, namely mx, my, and mz, are equal; 
the second where the masses mx and my are much 
greater than mz\ and the third where the mass mz 

is much greater than mx and my. The following numeri­
cal values were assumed: for the first case, mx = 
wy = mz = 1 mu; for the second, mx = my = 10 
mu and mz = 1 mu; and for the third, mK = my = 1 
mu and mz = 10 mu. 

In order to get a fit between the two models for the 
whole range of masses and energies, some of the param­
eters of HM had to be made energy dependent. First, 
only pxy and px were made energy dependent,1 but 
the fit obtained was limited to certain masses and 
energies. In order to extend the fit to the most general 
case, an energy dependence was introduced into the 
parameters Rx and Ry and the position of Y relative 
to Z and X at time / = 0. In what follows we shall 
describe how this dependence was derived. 

(a) The Dependence of pxy on the Energy. Both in 
the SM and in the HM, the reaction takes place fol­
lowing a direct repulsion between X and Y. It has 
already been shown in ref 1 that in order to get the 
correct dependence of the total reactive cross section 
with respect to the energy, one has to make the total 
geometric cross section for the collision between X 
and Y energy dependent, in such a way that the higher 
the energy of the reduced particle X-Y the smaller 
the corresponding cross section for collision. The 
physical justification for this dependence is closely 
related to the fact that the higher the energy of the 
reduced particle, the smaller will be the "effective" 
geometrical cross section for collision which might 
lead to reaction. 

If the potential between X and Y is assumed to be 
Fx,. (rxy), then there exist two straightforward ways 
to define an energy-dependent radius for the analogous 
billiard ball potential. If b is the impact parameter 
for the given interaction, then one possibility is to 
define the radius as the zero of the equation 

V (r \ b2 

1 - — — = 0 (26a) 
- ^ x y ' x y irxy=pxy 

where Exy is the kinetic energy of the reduced particle 
X-Y and Vxy(rxy) is given in (13). The zero of this 
equation is the closest approach between the two par­
ticles X and Y for a given impact parameter b. It 
turns out that in the low-energy region the values 
of pxy derived in this way yield a good fit between HM 
and SM. However, in the high-energy region, these pxy 

values give reaction cross sections which are too high, 
and one has to extract the values of pxy from the simpler 
equation used in ref 1. 

1 - ^ M = 0 (26b) 
- ^ x y \r,y=piy 

The values of pxy derived from (26b) are the closest 

approach of X and Y in a head-on collision, and are 
relatively smaller than those obtained from (26a). 

The relevance of the eq 26a and 26b to the different 
energy regions, i.e., the "low" and the "high" energy 
region, is discussed below. 

(b) The Dependence of px on the Energy. The de­
pendence of px on the energy is the same as was found 
in ref 1, namely px is the zero of the equation 

Vx(rx) + F0x - £ „ U - „ = 0 (27) 

where Exz is the initial energy of the reduced particle 
X-Z. 

(c) The Dependence of Rx and Ry on the Energy. In 
ref 1 it was shown that one can choose the values of Rx 

and Ry in such a way as to get the correct cross sections 
without making them energy dependent. The values 
attached to Rx and Ry were rather small (1 A each), 
and the fit derived was satisfactory. However, it turns 
out that using small radii of attraction in general yields 
satisfactory results only in the low-energy region, where­
as in the high-energy region (> 10 eV) the results derived 
are in certain cases overestimated. This deviation be­
comes more and more pronounced as the mass of Z 
becomes greater relative to the masses of X and Y. The 
reason for this is that when X interacts while possessing 
high kinetic energy, then the newly formed molecule 
ZX is highly excited. Since the Morse potential is a 
rather soft potential, the total internal energy of a 
diatomic molecule will only rarely exceed the value 
of the binding energy without dissociating. In sharp 
contrast to the Morse potential, the square well po­
tential might in certain cases allow the accumulation 
of an indefinite amount of internal energy in the rota­
tional mode. This is due to the fact that the square 
well potential is concerned only with the vibrational 
component of the energy and cannot allow bond 
stretching (and, hence, rupture) by the centrifugal force 
of the rotation. It can be shown that the division 
of energy between vibration and rotation is dependent 
on the radius of the square well in such a way that the 
smaller the radius the larger will be the amount of energy 
stored in the rotational mode (ETOt cc (b/r)2, Ev{h cc 1 — 
(b/r)2, where b is the impact parameter). Therefore, if 
use is made of square well potentials with small radii 
of attraction, one should expect larger total reactive 
cross sections (in the high-energy range) than would 
be expected from using square wells with large radii 
of attraction. 

To summarize this point, we note that in order 
to get a satisfactory fit along the whole energy range 
for all the cases under consideration, we have to use 
potential wells with relatively small radii in the low-
energy region and with relatively large radii in the 
high-energy region. For this purpose, we assume the 
radii of attraction Rx and Ry to be energy dependent. 
The dependence is derived in the following way. If Ex 

is the maximum energy that the atom X can have after 
the collision with Y, then Rx is determined from the 
equation 

yyi 

Vx(rx) + V0x - ~~-~'~Ex\rx = Rl = 0 (28) 
mx + mz 

The energy Ex is in fact equal to the initial energy of X, 
viz., E, and Vx(rx) is given in (8). In the same manner 
Ry is extracted from the equation 
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VjTy) + V«y -
m-

^ ^ E \ = O (29) 

where Vy(ry) is given in (8) and Ey is the maximum 
energy that Y can have following the collision with X, 
which is 

Ev = 4 mjn x">y 

(Wx + Wy)2 (30) 

Although we used Vx(rx) and Vy(ry) as given in (8), we 
could not get a satisfactory fit as long as we used the 
same values for r0x and r0y as are used in SM. These 
values were therefore changed and serve as parameters 
which are independent of the energy of the projectile 
and of the interacting masses. However, since X and Y 
are isotopes, we assumed r0x = r0y. The numerical 
value for r0x used in HM is 0.95 A, in contrast to the 
value of 0.75 A used in SM. 

Equations 28 and 29 are valid as long as E, the initial 
energy of X, satisfies the two inequalities 

and 

E< 

L < mz
 Vm 

mz + wy(wx + wy)2 

w. 4wxwv 
'Oy 

(31) 

(32) 

For energies which do not fulfill either of the inequalities 
31 or 32, the meaning of the radius of attraction is lost. 
Thus, in the event that neither of the above inequalities 
is valid, arbitrary large values were chosen for JRx and 
Ry (5 A in the example given below). 

The energy E for which one of the above inequalities 
first becomes an equality will be termed £ lh. Thus 
JS1Ih is defined as 

£ih = min ' m , wv 

m, 
mz + my(m 

W2 

x + myYv \ 
4WxWy 0 y / 

(33) 

This definition of JE1H, enables us to divide the whole 
reactive zone into two parts: the first (0, E^ will be 
termed the "low-energy region" and the second (EXh, c°) 
the "high-energy region." Returning to the problem 
of determining pxy, eq 26a is used as long a s E < £ l h and 
eq 26b is used when E > .En1. 

(d) Relative Position Adjustments of X, Y, and Z 
at Time ; = 0. In contrast to a hard-sphere 
interaction between two particles, a soft interaction 
is a process which takes some finite time. If the in­
teraction occurs between two particles where one is 
moving (projectile) and the other is initially static 
(target), then the position of the static particle changes 
during the course of the interaction. If tc is the time 
that elapses from the moment the two particles are a 
distance R apart until the moment their separation 
becomes smallest, then in the case of a head-on collision 
/c is given in the form15 

Ar 

VfO - f ) 
(34) 

(15) L. D. Landau and E. M. Lifshitz, "Mechanics," Pergamon Press, 
Elmsford, N. Y., 1960. 

where E is the energy at the center of mass of the two 
particles, /x is the reduced mass, V(r) is the interaction 
potential, r0 is the closest approach of the two particles, 
and R is some arbitrary large distance between the two 
particles for which one can assume that V(r) <~ 0. 
The time tc will be computed for two cases, the first (i) 

V(T) = Ae-ar 

In this case we obtain 

1 M , 
U- tSM - a 2 £ l n u 

1 + Vl - -a(R-n) 

vT -a(R-n) 

(35) 

(36) 

where, if values of R are large enough, it can be easily 
shown that 

/SM = ^f-E[(R ~ r.) + ^ ] (37) 

For the second case (ii) 

In this case, one obtains 

tc — ^HM — & < * - *> (39) 

From eq 37 and 39, we notice that the difference between 
*SM and ĤM is a value independent of R, namely 

'SM — 'HM 7 (^) 
2E\ oc ) 

(40) 

Consequently, from this point of view, in order to 
simulate the soft collision, one has to move the target 
atom away from its original position to such a distance 
that the time that elapses until the two particles are at 
their closest is equal in both models. This will happen 
if the distance in the HM case is increased by an amount 
"( 'SM — <HM)» where v is the relative velocity, i.e., v = 
(2E/ix). Therefore, the change has to be 

f('sM —
 ' H M ) 

In 4 
(41) 

Thus if rxyi is the relative position of X and Y in SM, 
then the relative position of the two particles in HM 
should be 

v>>' ! + a /|rxyi | 

In the same manner, if the relative position of Y and Z in 
SM is ryzi, then their relative position in HM should be 

In 4 rxyi 

" i ' x y i ; 

These shifts are valid as long as the radius of the well 
of Z and Y is large enough. However, it may happen 
(especially at low energies) that such a shift will bring 
atom Y outside the well. In such a case atom Y is 
shifted, at most, to a distance such that the separation 
between Y and Z will not become larger than the 
radius of the well. 

In principle, a similar change in the position of Z 
has to be made. However, since the main interaction, 
when X approaches the molecule ZY, is between X 
and Y, the change in the position of Z can be ignored. 
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Results 

The comparison between SM and HM was, as men­
tioned earlier, performed for three sets of masses. In 
Tables, 1, II, and III are presented the total reactive 

Table I. Comparison between the Results of SM and HM for 
the Masses m* = my = 10 mu, m2 = 1 mu 

Reactive cross sections, A2 

£,eV 

1 
3 
5 

10 
20 
40 

100 

0 < 9 < T 
SM 

0.05 
0.94 
1.38 
2.35 
2.30 
1.62 
0.92 

HM 

1.15 
1.55 
2.24 
1.82 
1.10 
0.97 

0 < B 
SM 

0.05 
0.94 
1.38 
2.16 
1.72 
0.98 
0.27 

< r/2 
HM 

1.15 
1.55 
2.02 
1.38 
0.82 
0.30 

Percent­
age0 

95 
94 
84 
70 
52 
70 

" The "fertile" initial conditions (those for which the trajectories 
end in reactions) are not necessarily the same in the two models. 
This column shows the percentage of initial conditions which hap­
pens to be fertile in both models, expressed as a percentage of the 
total number of fertile trajectories in SM (0 < d < x/2). 

Table II. Comparison between the Results of SM and HM for 
the Masses m* = my = m, = 1 mu 

Reactive cross sections, A 

E, eV° 

1 
3 
5 
7 

10 
15 

o < e 
SM 

0.58 
2.48 
2.70 
2.86 
2.20 
1.29 

< TT 

HM 

0.45 
2.35 
2.72 
2.96 
2.34 
1.90 

0 < 0 < 
SM 

0.58 
2.20 
2.10 
1.96 
1.42 
0.67 

ir/2 
HM 

0.45 
2.20 
2.10 
1.91 
1.20 
0.89 

Percent­
age1* 

75 
96 
98 
91 
76 
83 

° See footnote a, Table I. 

Table III. Comparison between the Results of SM and HM 
for the Masses m* = my = 1 mu, ms = 10 mu 

•Reactive cross sections, A2 . 

E, eV 

1 
3 
4 
7 

10 
15 

O < 0 < x 
SM 

1.06 
3.00 
3.14 
1.95 
1.11 
0.60 

HM 

0.93 
3.14 
3.83 
2.76 
2.18 
1.06 

o < e 
SM 

1.06 
2.11 
1.87 
1.16 
0.53 
0.29 

< JT/2 
HM 

0.93 
2.32 
1.96 
1.11 
0.67 
0.29 

Percent­
age" 

77 
99 
99 
86 
73 
83 

° See footnote a, Table I. 

cross sections as a function of the energy of the pro­
jectile (atom X) in the laboratory system, for both 
SM and HM. We can distinguish between two cases: 
(i) when the angle 6 changes from 0 to 180° (if R 
is the initial position of X with respect to the molecule 
ZY, then 6 is the angle between R and the axis of the 
molecule ZY); (ii) when the angle 9 changes from 0 
to 90°. 

In the first case, atom X is allowed to approach 
the molecule from all directions, whereas in the second 
it is allowed to approach only from those directions 
for which, at time t = 0, atom Z is more or less between 
atom X and atom Y. On applying the model to prac­
tical cases, this assumption enables us to distinguish 
between the two reactions 

ZX + Y 

YX + Z 

As mentioned earlier, the comparison is performed 
by calculating the trajectories according to each model 
when the same initial conditions are chosen for both. 
It should be noted that the "fertile" initial conditions 
(those for which the trajectories end in reactions) are 
not necessarily the same in the two models; the per­
centage which does happen to be the same in both 
models was calculated, and the results are shown in 
column 5 of each table. It is seen that on the whole, 
in a high percentage of cases, those trajectories that 
lead to reactions in one model will also do so in the 
other model. 

Considering the results summarized in the tables 
(particularly columns 3 and 4), it is seen that the fit 
between the two models is satisfactory. This fit was 
achieved by the adjustment of one parameter only 
(/"ox = J-Oy)- All the other parameters used in HM 
were derived, as described, from SM. 

Further details on the comparison between SM and 
HM can be derived from Figures 3-11, which represent 
the internal and translational energy distributions of 
the newly formed molecules. We notice that as a 
rule the newly formed molecules are more excited 
(internally and translationally) in SM than in HM, 
which means that in HM the atom Y carries away 
more energy from the system ZX than it does in SM. 
This phenomenon is rather general, almost independent 
of the initial energy of the projectile, and means that 
the three-body interaction in SM is not a chain of 
successive pure two-body interactions. 

Discussion of the Results 

In this work reactive cross sections were computed 
using (1) an energy-dependent hard model, and (2) 
the soft model due to Karplus and Raff. The calcula­
tions were performed almost for the entire reactive 
zone (namely, for energies above the thermal region) 
and for three different sets of masses. The results 
enable us to evaluate the importance of the different 
parameters defining the potential energy surfaces applied 
in both models. 

In ref 1 it was already recognized that in order to 
obtain the correct dependence of the total reactive 
cross section on the energy, it was necessary to introduce 
an energy dependence of pxy (defined as the radius 
of the hard-sphere potential Kxy(rxy) governing the 
interaction between X and Y). This was further con­
firmed in the present work. However, it was shown 
that an energy dependence such as that suggested in 
ref 1, where the dependence on the impact parameter 
was ignored, would not always yield the desired results. 
When mz « mx, my, the reactive cross sections ac­
cording to HM were much smaller than those according 
to SM; this discrepancy was resolved by extracting 
Pxy from eq 26a instead of 26b, which yielded larger 
cross sections for collision between X and Y, and con­
sequently larger reactive cross sections. In this con­
nection we should also mention the other modification 
introduced here, namely, the adjustment of the relative 
position of Y at time t = 0. This was found to be 
necessary particularly when mz « Wx, and when 
the energy was high (>10 eV). The fact that these 
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Figure 3. Translational energy distribution of the newly formed 
molecule ZX for the case mx = my = lOmu, mz = 1 mu; £ = 3eV. 
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Figure 4. The same as Figure 3, but with mx = my = 10 mu, mz 
= 1 mu; E = 2OeV. 
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Figure 5. Internal energy distribution of the newly formed mole­
cule ZX, for the case tnx = my = 10 mu, mz = 1 mu; E = 20 eV. 

modifications of the two-body potential between X 
and Y had to be added to the H M in order to get a 
fit with the SM indicates that under the above mass 
and energy conditions the reactive cross sections are 
rather sensitive to the potential. 

In the SM, therefore, we conclude that the repulsion 
term in the Blais-Bunker potential is decisive, and 
any change in it will lead to different results. The 
sensitivity becomes more pronounced the higher the 
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Figure 6. Translational energy distribution of the newly formed 
molecule ZX, for the case mx = my = mz = 1 mu; E = 3 eV. 
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Figure 7. The same as Figure 6, but with m, = % = m, = 1 mu; 
E= 10 eV. 
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Figure 8. Internal energy distribution of the newly formed molecule 
ZX, for the case mx = my = m, = 1 mu; E = 3 eV. 

energy of X and the larger the mass of X compared 
with that of Z. 
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Figure 9. The same as Figure 8, but with mK = my = mz = 1 mu; 
£ = 10 eV. 
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Figure 10. The same as Figure 8, but with mx = mv= 1 mu, mz 
10mu;£ = 3eV. 

In the present work we assumed Rx and Ry, the radii 
of the potential wells which replaced the Morse po­
tential in the Blais-Bunker potential, to be energy 
dependent, even though it seemed that except for certain 
cases satisfactory results could be obtained without 
doing so. In general, using small radii of attraction 
(of about the bond length) gave good results as long 
as mz was not too large compared with mx. However, 
for mz » mx, and for energies higher than Elh (>10 
eV), a fixed small radius of attraction led to results 
which were too high. The use of relatively large radii 
of attraction reduced the total reactive cross sections 
by preventing the formation of molecules with internal 
energies higher than the binding energy. The agree­
ment between the results of the SM and HM that could 
be achieved without making Rx and Ry energy de­
pendent indicates the relatively low sensitivity to the 
shape of the attractive part of the (Morse) potential, 
as long as mz is not too large compared with mx. If, 
however, mz» wx, one finds that the detailed structure 
of the attractive part of the potential will indeed in­
fluence the results. 

Concerning the inner repulsive part of the Morse 
potential, it was found that py, the radius of repulsion 
for that part of the potential, does not have to be 
made energy dependent except at very high energies 
(~100 eV). This shows that this part of the potential 
has in fact no influence on the final results. 

To sum up, the good fit obtained between the total 
reactive cross sections calculated by the SM and HM 
models, for energies less than 10 eV (but above the 
thermal region), indicates an insensitivity of the cross 
sections to the details of the potential energy surface.16 

Thus it is impossible to check the models by comparison 
with experiments in this energy region. Above 10 eV, 
however, the results given by the two models diverge 
for certain mass conditions, and here experiments are 
called for. By going from one set of masses to another, 
information can be derived on different parts of the 

(16) This conclusion was criticized by a referee, who pointed out that 
it contradicts other recent studies [cf. P. J. Kuntz, E. M. Memeth, J. C. 
Polanyi, and W. H. Wong, / . Chem. Phys., 52, 4654 (1970)]. Conse­
quently we decided to study this point in greater detail, and the results 
will be reported in a subsequent paper. 
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11. The same Figure 8, but with m* = my = 1 mu, m% 
E = 7 eV. 

potential. For example, for mx « mz, more informa­
tion can be derived on the attractive portion of the 
(Morse) potential, whereas for mx » mz, more in­
formation can be derived on the direct interaction be­
tween X and the entire molecule, i.e., on the repulsive 
part. 

The situation is completely different if differential 
cross sections are considered. Since in this case the 
results derived from HM are always in disagreement 
with those obtained using SM, we may conclude that 
cross molecular beam type experiments where various 
kinds of differential cross sections are measured could 
give a good indication on what type of potential is 
really governing the interaction in the considered energy 
range. 

Acknowledgments. The authors wish to express their 
thanks to Professor M. Karplus of Harvard University 
for helpful discussions on the different aspects of the 
problem. We would also like to acknowledge the 
cooperation of Mr. Z. B. Alfassi who programmed 
one of the computer programs used in this work. 

Baer, Amiel j Semiempirical Treatment of Displacement Reactions 


